
The New Rexx Debugger

Dominic Wise
1

2025 International Rexx Language Association Symposium,

University of Vienna, Vienna, 

6th May 2025

By Dominic Wise



The New Rexx Debugger

Dominic Wise
2

• What is “the New Rexx Debugger”
• Why create this at all
• What interpreter features does it leverage / why ooRexx ?
• Cross platform considerations
• Features  / demonstration
• Links and Questions

Presentation overview



The New Rexx Debugger

Dominic Wise
3

• A dialog based graphical debugger for Rexx programs
• Source code, stack and variable views
• Single step and run to breakpoint features
• Console for interacting with the program and debugger
• Standalone and embedded program can be debugged
• Two modes – direct / embedded launch or debugger launch

• Written in Rexx – no compiled code
• Runs in-interpreter on ooRexx 4.2 or later

• Cross platform  - Windows, Linux  and MacOS

What is it



The New Rexx Debugger

Dominic Wise
4

What is it – Windows 

Source code

Call stack

Display console

Input console

Watch windows 
to display top 
level variables 
and expanded 
collection 
objects



The New Rexx Debugger

Dominic Wise
5

What is it – Linux

Different ways 
of viewing string 
variables



The New Rexx Debugger

Dominic Wise
6

What is it – MacOS

Breakpoint 
settings dialog



The New Rexx Debugger

Dominic Wise
7

• Rexx has powerful debugging features already
• TRACE 

• Report running program status
• Interactive (after each instruction)

View & update variables, skip instructions

• I wanted a GUI debugger for Rexx and couldn’t find one
• Mostly  a Windows developer with C/C++ and I like GUI debuggers
• I work with (oo)Rexx as an embedded application interfacing engine

• History, going back to OS/2 is mainly with a focus on ANSI-like Rexx
features

• The initial target was embedded use on Windows (my use case)

Why was it created



The New Rexx Debugger

Dominic Wise
8

• Advent of code 2023
• Set of coding puzzles over December
• Attempted this in ooRexx
• Didn’t get especially far
• Further increased my desire  for a GUI debugger
• Discovered and started to use ooRexx features

• Became aware of language and platform features that 
might make an ooRexx debugger possible

Why was it created - continued



The New Rexx Debugger

Dominic Wise
9

• Functionality a GUI debugger needs from the interpreter

• Ability to take control of a running program
• Ability to view and manage program state 
• Non-intrusive – isolation of debugger program state
• A UI library
• Some form of multi-threading support (generally, for UI)

What interpreter features – why ooRexx



The New Rexx Debugger

Dominic Wise
10

• Option: Use of Rexx system exit interfaces

• Part of the standard Rexx programming API
• Registered by the program running the interpreter
• Can halt after every instruction 
• Can intercept interactive trace input responses along with 

program and trace output

• An interpreter wrapper program needs to be built
• Requires modification of embedded engines which may not be 

possible

Required features - Taking control of the program



The New Rexx Debugger

Dominic Wise
11

• Option: Leverage language hooks to intercept tracing
• Interpreter effectively calls PULL on an input stream

• In ooRexx, this can be intercepted to call ooRexx code
• This uses the .DEBUGINPUT  global object

• How ? Intercept standard ooRexx I/O
• Standard stream  objects .STDIO, .STDIN. STDERR etc exist

Have methods like LINEOUT, CHAROUT, LINEIN etc

Instead of SAY: .STDOUT~LINEOUT string
Instead of PULL: str = .STDIN~LINEIN

Required features - Taking control of the program



The New Rexx Debugger

Dominic Wise
12

• An extra level, the IO stream can be accessed “Monitors”
• Monitors are literally placeholders for other objects
• A target object is assigned to the monitor
• The target object can be queried and modified
• All method calls are forwarded to the current target object
• The  set of IO monitors

• .INPUT redirects to the .STDIN object
• .OUTPUT redirects to .STDOUT object
• .ERROR redirects to  .STDERR
• .TRACEOUTPUT (trace output) redirects to .ERROR
• .DEBUGINPUT (interactive trace input)

Required features - Taking control of the program



The New Rexx Debugger

Dominic Wise
13

For normal(*) IO processing ooRexx will use the monitor objects 
and not the underlying IO objects so:

Instead of SAY: . OUTPUT~LINEOUT string
Instead of PULL: str = . INPUT~LINEIN

(*) The interpreter wrapper may have set up API system exits which 
tell ooRexx NOT to call these – can be an issue when embedding

This is true for stdout and trace output for my organisation’s 
application

Required features - Taking control of the program



The New Rexx Debugger

Dominic Wise
14

During interactive tracing, .DEBUGINPUT~LINEIN will be called to get 
user response (unless blocked by a registered API system exit). The 
following is a customized interactive debugger utilising this:

.DEBUGINPUT~destination(.debuginputinterceptor~new)
trace ?A /* Trace after every instruction */
do i = 1 to 10

say i
end

::class debuginputinterceptor
::method linein
say 'Press enter to continue or type code to run'
parse pull data
return data

Required features - Taking control of the program



The New Rexx Debugger

Dominic Wise
15

• Program state requirements
• Current location

• Source file (to load the correct file)
• Current line for tracking and breakpoints

• Stack trace
• Program variables e.g. for debugger Watch windows 
• Error state

• All accessible from the dynamically created .context object
executable, line, variables , stackframes, condition 

Required features –Managing  program state



The New Rexx Debugger

Dominic Wise
16

• Communication via .local~debug.channels object
• Per-thread debug state (one channel per thread)
• Accessible to both program and debugger
• Elements for the program to store state information
• A “next action” field for the debugger 

• Multiple round trips to the debugger following the initial 
execution of a new clause

• The interactive trace response from the debugger tells the 
program what information to provide next

• If the debugger decides to stop the program, there is no 
response until one is provided by the debugger window

Required features – Managing program state



The New Rexx Debugger

Dominic Wise
17

• Doesn’t need to be especially complex
• Multiple dialogs are used e.g. main dialog and  watch window 

dialogs
• Basic dialog elements are sufficient, lists, buttons, entry fields 
• Windows has ooDialog which has the above requirements
• There is no direct equivalent on other platforms so the initial 

releases were only on this platform

Required features – A UI library



The New Rexx Debugger

Dominic Wise
18

• After I posted details of my work a Linux version was requested
• The is no native ooRexx UI library for non-Windows platforms
• Lots of helpful discussions on the mailing list

• BSF4ooRexx provides full access to a Java JRE /JDK from ooRexx
• Java Swing /AWT libraries offer well tested basic UI elements in 

Java 8 and these are core components so always available
• Using Java extended support to Linux, Mac and maybe others

Required features – Cross platform consideration



The New Rexx Debugger

Dominic Wise
19

• The debugger comprises a core low-level debugger module 
RexxDebugger.rex (this also contains some cross-UI shared 
code) and separate UI modules 

• The two UI modules are implemented as plugins in:
• RexxDebuggerWinUI.rex for  ooDialog
• RexxDebuggerBSFUI.rex for  Java /BSF4ooRexx

• Both modules implement the same UI functionality
• A thin (common) API is exposed for the core debugger to use
• One of the UI modules is loaded by the debugger at launch
• The Java UI can be used on Windows if desired

Required features – Cross platform considerations



The New Rexx Debugger

Dominic Wise
20

• On Windows, the debugger files can be anywhere in the path, 
running RexxDebugger.rex will launch the debugger

• On Unix platforms a shell script (“rexxdebugger” is provided to 
run the debugger with required environment options

• No “install.sh” but debugger files can be copied to e.g. 
/usr/local/bin and rexxdebugger made executable

• Deployment instructions are available in the README.md

Required features – Cross platform considerations



The New Rexx Debugger

Dominic Wise
21

Direct launch - Tutorial Walkthrough
• Direct launch is running the program directly from the command line or in an application 

which hosts an embedded ooRexx interpreter to run the program

• The main dialog has source, stack and console views with console input and push buttons 
for control

• Program and trace output is not captured to the debugger console  by default but 
debugger commands can be used to modify this behaviour

• The debugger pauses after executing an instruction as this is when Rexx requests trace 
input

• Breakpoints can be added and removed via double clicking and conditions set by right-
clicking on them. Empty /**/ comments in the code can  be used to indicate that the 
debugger should insert a breakpoint when loading the program

• Rexx statements can be typed in the console prompt to view /modify program state



The New Rexx Debugger

Dominic Wise
22

Direct launch - Tutorial Walkthrough (continued)
• The Watch button opens a variable listing aka “watch window”
• Watch windows update after running part of the program or executing a console statement
• Strings show on a single line by default, but double-clicking opens another watch window 

where the string can be viewed in multi-line and hexadecimal (byte) formats
• All collection objects (stems, arrays etc) in a watch window can be double clicked on to 

show their items in a new watch window. A (+) sign indicates an expandable collection
• In the top level watch window, .LOCAL and .ENVIRONMENT directories can be selected for 

viewing with a right-click menu action
• When in a ROUTINE, METHOD or procedure, watch windows will update to show the 

variables for that scope, greying out if the watch window is not valid for that scope
• For direct launch the program needs to include instructions / directives for activating 

interactive trace and loading the debugger, at the end of the tutorial.rex file in this 
instance.



The New Rexx Debugger

Dominic Wise
23

Launching  from the debugger
• The debugger is run and loads the Rexx program itself
• The same UI is presented as for direct launch but with the addition of as Open button
• In this mode the default is for program output to be captured to the debugger console with trace 

output (apart from errors) silently dropped
• The program to run can be specified as a command line option e.g. rexxdebugger myprog.rex, or 

loaded via the Open button
• Command line options are available to customize the debug session
• No modification of the program is required

Sample TaggedClass.rex – extending a class to display object detail
• Object attributes for custom classes do not display in watch windows
• Implement an unguarded method “makedebuggerstring” to return display information
• The return value is displayed alongside the object type in watch windows
• Illustrated on the next slide



The New Rexx Debugger

Dominic Wise
24

TaggedClass.rex sample

NOP
pt1 = .point~new(1,2)
pt2 = .taggedpoint~new(3,4)
NOP

::class point
::attribute x
::attribute y

::method init
expose x y
use arg x,y

::class taggedpoint
::method init
expose x y
use arg x,y

::attribute x
::attribute y

::method makedebuggerstring unguarded
expose x y
return x','y



The New Rexx Debugger

Dominic Wise
25

Questions ?



The New Rexx Debugger

Dominic Wise
26

Links
ooRexxDebugger
https://sourceforge.net/projects/oorexxdebugger/

ooRexx (4.2 or later required)
https://sourceforge.net/projects/oorexx/

Java UI - BSF4ooRexx (641 or later required)
https://sourceforge.net/projects/bsf4oorexx/

Java UI - Java 8 JRE (Minimum Java version tested)
https://www.oracle.com/java/technologies/javase/javase8-archive-downloads.html


